Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes

نویسندگان

  • Xi Chen
  • Lily Wang
  • Jonathan D. Smith
  • Bing Zhang
چکیده

MOTIVATION Gene set analysis allows formal testing of subtle but coordinated changes in a group of genes, such as those defined by Gene Ontology (GO) or KEGG Pathway databases. We propose a new method for gene set analysis that is based on principal component analysis (PCA) of genes expression values in the gene set. PCA is an effective method for reducing high dimensionality and capture variations in gene expression values. However, one limitation with PCA is that the latent variable identified by the first PC may be unrelated to outcome. RESULTS In the proposed supervised PCA (SPCA) model for gene set analysis, the PCs are estimated from a selected subset of genes that are associated with outcome. As outcome information is used in the gene selection step, this method is supervised, thus called the Supervised PCA model. Because of the gene selection step, test statistic in SPCA model can no longer be approximated well using t-distribution. We propose a two-component mixture distribution based on Gumbel exteme value distributions to account for the gene selection step. We show the proposed method compares favorably to currently available gene set analysis methods using simulated and real microarray data. SOFTWARE The R code for the analysis used in this article are available upon request, we are currently working on implementing the proposed method in an R package.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

Supervised Wavelet Method to Predict Patient Survival from Gene Expression Data

In microarray studies, the number of samples is relatively small compared to the number of genes per sample. An important aspect of microarray studies is the prediction of patient survival based on their gene expression profile. This naturally calls for the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based on combining wavelet ...

متن کامل

Statistical Applications in Genetics and Molecular Biology

Statistical analysis of microarray gene expression data has recently attracted a great deal of attention. One problem of interest is to relate genes to survival outcomes of patients with the purpose of building regression models for the prediction of future patients’ survival based on their gene expression data. For this, several authors have discussed the use of the proportional hazards or Cox...

متن کامل

Predicting 5-Year Survival Status of Patients with Breast Cancer based on Supervised Wavelet Method

OBJECTIVES Classification of breast cancer patients into different risk classes is very important in clinical applications. It is estimated that the advent of high-dimensional gene expression data could improve patient classification. In this study, a new method for transforming the high-dimensional gene expression data in a low-dimensional space based on wavelet transform (WT) is presented. ...

متن کامل

شناسایی ژن‌های مرتبط با بقا در سرطان کلیه با استفاده از روش مؤلفه‌های اصلی لاسو

Background: Identification of correlated genes with survival by gene expression data is an important application of microarray data. The purpose of this study is to identify correlated genes with survival of conventional renal cell carcinoma (cRCC) patients based on gene expression profiles. Methods: This study is a survival analysis with high dimensional covariates and containing 14814 gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 24 21  شماره 

صفحات  -

تاریخ انتشار 2008